skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jones, Jennifer M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Climate change will increase soil drying, altering microbial communities via increasing water stress and decreasing resource availability. The responses of these microbial communities to changing environments is likely governed by physiological tradeoffs between high yield, resource acquisition, and stress tolerance (Y-A-S framework). We leveraged a unique field experiment that manipulates both drought and carbon availability across two years and three land uses, and we used both metagenomic and bioassay indicators of the three microbial community traits to test the following hypotheses: 1. Drought increases microbial allocation to stress tolerance functions, at the expense of growth and resource acquisition. 2. Because microbes are resource-limited under drought, increased carbon will enable greater expression of stress tolerance. 3. All three key life history traits described in the YAS framework will trade off, especially when resources are limited. Drought did increase microbial physiological investment in stress tolerance (measured via trehalose production), but we saw few other changes in microbial communities under drought. Carbon addition increased resource acquisition (measured via enzyme activity and resource acquisition gene abundance) and stress tolerance (trehalose assay), but did so in both drought and average rainfall environments. We found no evidence of trait tradeoffs, as we found no significant negative correlations between traits (measured via bioassay and metagenomics). In summary, we found C addition, and to a lesser extent, drought, both altered microbial community function and functional genes. However, resources did not alter drought response in a way that was consistent with theory of life history tradeoffs. 
    more » « less
  3. IntroductionDespite converging evidence that people more closely associate the construct of criminality with Black people who exhibit a more African facial phenotype than Black people who express a more European phenotype, eyewitness researchers have largely ignored phenotypic bias as a potential contributor to the racial disparities in the criminal legal system. If this form of phenotypic bias extends to eyewitness identification tasks, eyewitnesses may be more likely to identify Black suspects with an African rather than European phenotype, regardless of their guilt status. Further, in cases where the witness’s description of the perpetrator does not contain phenotypic information, phenotypic mismatch between the suspect and the other lineup members may bias identification decisions toward or against the suspect. If witnesses can use elements of the lineup construction to guide their identification decisions rather than relying on their recognition memory, then the lineup should be deemed unfair due to suspect bias. The current study also investigated lineup presentation method as a procedural safeguard, predicting that that when lineups were presented simultaneously, there would be a significant two-way interaction of phenotypic bias and lineup composition, with a larger simple main effect of phenotypic bias when lineups were suspect-biased (i.e., the fillers were a phenotypic mismatch to the suspect) than when all lineup members shared the same phenotype. We expected that this interaction would be significantly smaller or non-significant for sequential lineups. MethodsParticipants watched a mock crime video that contained a Black culprit with either a more African phenotype or a less African phenotype before attempting identifications from a photo array that contained a suspect whose phenotype always matched the culprit viewed in the video, but varied in culprit-presence, phenotypic match of the suspect and fillers, and presentation method. ResultsParticipants did not identify Black suspects with Afrocentric features more often than Black suspects with Eurocentric features. However, witnesses made more identifications of suspects when the fillers did not match the suspect’s phenotype compared to when all lineup members possessed similar phenotypic features. DiscussionIn sum, phenotypic bias did not influence our participant-witnesses’ identification decisions, nor interact with lineup composition and lineup presentation type to affect identifications of suspects, suggesting that phenotypic bias may be less influential in match-to-memory tasks than other types of legal decision-making (e.g., determining guilt and sentencing). However, the suggestiveness created by failing to match fillers’ phenotypes to the suspect’s phenotype can be avoided with proper attention to fair lineup construction. 
    more » « less